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Nonlinear regression

The basic idea of nonlinear regression is the same as
that of linear regression, namely to relate a response
Y to a vector of predictor variablesx D �x1, . . . , xk�T

(see Linear models). Nonlinear regression is char-
acterized by the fact that the prediction equation
depends nonlinearly on one or more unknown param-
eters. Whereas linear regression is often used for
building a purely empirical model, nonlinear regres-
sion usually arises when there are physical reasons for
believing that the relationship between the response
and the predictors follows a particular functional
form. A nonlinear regression model has the form

Yi D f�xi, q� C εi, i D 1, . . . , n �1�

where theYi are responses,f is a known func-
tion of the covariate vectorxi D �xi1, . . . , xik�T and
the parameter vectorq D ��1, . . . , �p�T, and εi are
random errors. Theεi are usually assumed to be
uncorrelated with mean zero and constant variance.

Example 1: Retention of Pollutants in Lakes
Consider the problem of build-up of a pollutant in
a lake. If the process causing retention occurs in
the water column, it is reasonable to assume that the
amount retained per unit time is proportional to the
concentration of the substance and the volume of the
lake. If we can also assume that the lake is completely
mixed, then an equilibrium equation leads to

Yi D 1 � 1

1 C �xi
C εi �2�

whereYi is retention of theith lake, xi is the ratio
of lake volume to water discharge (the hydraulic
residence time of the lake) and� is an unknown
parameter [5].

The unknown parameter vectorq in the nonlin-
ear regression model is estimated from the data by
minimizing a suitable goodness-of-fit expression with
respect toq. The most popular criterion is the sum of
squared residuals

n∑

iD1

[yi � f�xi, q�]2

and estimation based on this criterion is known as
nonlinear least squares. If the errors εi follow a

normal distribution, then the least squares estimator
for q is also themaximum likelihood estimator.
Except in a few isolated cases, nonlinear regression
estimates must be computed by iteration using opti-
mization methods to minimize the goodness-of-fit
expression.

The definition of nonlinearity relates to the
unknown parameters and not to the relationship
between the covariates and the response. For example
the quadratic regression model

Y D ˇ0 C ˇ1x C ˇ2x2 C ε �3�

is considered to be linear rather than nonlinear
because the regression function is linear in the
parameterš j and the model can be estimated by
using classical linear regression methods.

Practical introductions to nonlinear regression
including many data examples are given by Ratkow-
sky [8] and by Bates and Watts [3]. A more
extensive treatment of nonlinear regression method-
ology is given by Seber and Wild [9]. See also
Section 15.5 [7]. Most major statistical software
programs include functions to perform nonlinear
regression.

Common Models

One of the most common nonlinear models is the
exponential decay or exponential growth model

f�x, q� D �1 exp���2x� �4�

(see Logarithmic regression). This model can be
characterized by the fact that the functionf satisfies
the first-order differential equation

∂f�x, q�

∂x
D cf�x, q� �5�

for some constantc. Physical processes can often
be modelled by higher-order differential equations,
leading to higher-order exponential function models,
of the form

f�x, q� D �1 C
k∑

jD1

�2j exp���2jC1x� �6�

wherek is the order of the differential equation. See,
for example, [3, Chapter 6] or [9, Chapter 8].



2 Nonlinear regression

Another common form of model is the rational
function:

f�x, q� D
∑k

jD1
�jxj�1

1 C
∑m

jD1
�kCjxj

�7�

Rational functions are very flexible in form and can
be used to approximate a wide variety of functional
shapes.

In many applications the systematic part of the
response is known to be monotonic increasing in
x, wherex might represent time or dosage. Nonlin-
ear regression models with this property are called
growth models (see Age–growth modeling). The
simplest growth model is the exponential growth
model (4), but pure exponential growth is usually
short-lived. A more generally useful growth curve
is the logistic curve

f�x, q� D �1

1 C �2 exp���3x�
�8�

This produces a symmetric growth curve which
asymptotes to�1 asx ! 1 and to zero asx ! �1.
Of the two other parameters,�2 determines horizontal
position or ‘take-off point’, and�3 controls steepness.
The Gompertz curve produces an asymmetric growth
curve

f�x, q� D �1 exp[��2 exp���3x�] �9�

As with the logistic curve,�1 sets the asymptotic
upper limit, �2 determines horizontal position, and
�3 controls steepness. Despite these interpretations,
it can often be difficult in practice to isolate the
interpretations of individual parameters in a nonlin-
ear regression model because of high correlations
between the parameter estimators. More examples of
growth models are given in [9, Chapter 7].

Transformably Linear Models

Some simple nonlinear models can be converted
into linear models by transforming one or both of
the responses and the covariates. For example, the
exponential decay model

Y D �1 exp���2x� �10�

can, if Y > 0, be transformed into

ln Y D ln �1 � �2x �11�

If all the observed responses are positive and varia-
tion in lnY is more symmetric than variation inY,
then it is likely to be more appropriate to estimate
the parameters�1 and�2 by linear regression of lnY
on x rather than by nonlinear least squares. The same
considerations apply to the simple rational function
model

Y D 1

1 C �x
�12�

which can, ifY 6D 0, be linearized as

1

Y
� 1 D �x �13�

One can estimate� by proportional linear regres-
sion (without an intercept) of�1/Y� � 1 on x. Trans-
formably linear models have some advantages in that
the linearized form can be used to obtain starting
values for iterative computation of the parameter esti-
mates. Transformation to linearity is only a possibility
for the simplest of nonlinear models, however.

Iterative Techniques

If the functionf is continuously differentiable inq,
then it can be linearized locally as

f�q, x� D f�q0, x� C X0�q � q0� �14�

whereX0 is then ð p gradient matrix with elements
∂f�xi, q0�/∂�j. This leads to the Gauss–Newton
algorithm for estimatingq,

�1 D q0 C �XT
0X0��1XT

0e �15�

where e is the vector of workingresiduals yi �
f�xi, q0�. The Gauss–Newton algorithm increments
the working estimateq at each iteration by an amount
equal to the coefficients from the linear regression of
the current residualse on the current gradient matrix
X. If the errors εi are independent and normally
distributed, then the Gauss–Newton algorithm is
an application of Fisher’s method of scoring for
obtaining maximum likelihood estimators.

If X is of full column rank in a neighborhood
of the least squares solution, then it can be shown
that the Gauss–Newton algorithm will converge
to the solution from a sufficiently good starting
value [6]. There is no guarantee, though, that the
algorithm will converge from values further from
the solution. In practice, it is usually necessary to
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modify the Gauss–Newton algorithm in order to
secure convergence.

Example 2: PCB in Lake Trout Data on the
concentration of Polychlorinated biphenyl (PCB)
residues in a series of lake trout from Cayuga Lake,
New York, were reported in Bache et al [1]. The
ages of the fish were accurately known because the
fish were annually stocked as yearlings and distinctly
marked as to year class. Each whole fish was mechan-
ically chopped and ground and a 5-g sample taken.
The samples were treated and PCB residues in parts
per million (ppm) were estimated by means of col-
umn chromatography. A combination of empirical
and theoretical considerations leads us to consider
the model

ln[PCB] D �1 C �2x�3 C ε �16�

in which [PCB] is the concentration of PCB, and
is age. The natural logarithm of [PCB] is modeled as
a constant plus an exponential growth model in terms
of ln�x�. This model was estimated from the data with
using least squares, and the sequence of working esti-
mates resulting from the Gauss–Newton algorithm
are given in Table 1. The iteration was started at
�3 D 0.5 whereas the least squares solution occurs
at �3 D 0.19. The other two parameters were initial-
ized at their optimal values given�3 D 0.5. It can be
seen that the iteration initially overshoots markedly
before oscillating about the solution and then finally
converging. The algorithm fails to converge from
starting values too far from the least squares esti-
mates. For example the algorithm diverges from
�3 D 1.0. The data and fitted values are plotted in
Figure 1.

The basic idea behind modified Gauss–Newton
algorithms is that care is taken at each itera-
tion to ensure that the update does not overshoot
the desired solution. A smaller step is taken if
the proposed update would lead to an increase
in the residual sum of squares. There are two
ways in which a smaller step can be taken: line-
search methods and Levenberg–Marquart damping.
The key to line-search algorithms is the fact that
XTX is a positive definite matrix. This guaran-
tees that �XT

0X0��1e is a descent direction; that
is, the sum of squared residuals will be reduced
by the step fromq0 to q0 C ˛�XT

0X0��1XT
0e, ˛ >

0, where ˛ is sufficiently small. The line-search

Table 1 Gauss–Newton iteration, starting from
�3 D 0.5, for PCB in lake trout data

Iteration �1 �2 �3

1 0.0315 0.2591 0.5000
2 �2.7855 2.6155 �1.0671
3 3.7658 �3.8699 �2.8970
4 2.2455 �2.3663 1.9177
5 �0.1145 0.1698 1.9426
6 �0.0999 0.1619 1.6102
7 �0.3286 0.3045 0.9876
8 �1.1189 0.9774 0.1312
9 �2.9861 2.8261 0.6888

10 �1.9183 1.7527 0.5595
11 �2.4668 2.2974 0.3316
12 �3.9985 3.8307 0.1827
13 �4.7879 4.6254 0.2033
14 �4.8760 4.7126 0.1964
15 �4.8654 4.7023 0.1968
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Figure 1 Concentration of PCB as a function of age for
the lake trout data

method consists of using one-dimensionaloptimiza-
tion techniques to minimize the sum of squares with
respect to˛ at each iteration. This method reduces
the sum of squares at every iteration and is there-
fore guaranteed to converge unless rounding error
intervenes.

Even easier to implement than line searches and
similarly effective is Levenberg–Marquardt damping.
Given any positive definite matrixD, the sum of
squares will be reduced by the step fromq0 to
q0 C �XT

0X0 C �D��1XT
0e, if � is sufficiently large.

The matrix D is usually chosen to be either the
diagonal part ofXT

0X0 or the identity matrix. In
practice, � is increased as necessary to ensure a
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reduction in the sum of squares at each iteration, and
is otherwise decreased as the algorithm converges to
the solution.

Although the Gauss–Newton algorithm and its
modifications are the most popular algorithms for
nonlinear least squares, it is sometimes convenient
to use derivative-free methods to minimize the sum
of squares and in so doing to avoid computing the
gradient matrixX. Possible algorithms include the
Nelder–Mead simplex algorithm and the pseudo-
Newton–Raphson method with numerical derivatives
(see Optimization).

Inference

Suppose that theεi are uncorrelated with mean zero
and variance�2. Then the least squares estimatorsq̂

are asymptotically normal with meanq and covari-
ance matrix �2�XTX��1 [6]. The variance�2 is
usually estimated by

s2 D 1

n � p

n∑

iD1

[yi � f�xi, q̂�]2 �17�

Standard errors and confidence intervals for the
parameters can be obtained from the estimated
covariance matrixs2�XTX��1 with X evaluated at
q D q̂. In practice, the linear approximations that the
standard errors and confidence intervals are based on
can be quite poor [3]. The approximations tend to
be more reliable when the sample sizen is large or
when the error variance�2 is small.

Hypotheses about the parameters can also be
tested usingF-statistics obtained from differences in
sums of squares. Suppose for example that

f�x, q� D �1 exp���2x� C �3 exp���4x� �18�

and we wish to determine whether it is necessary
to retain the second exponential term in the model.
Let SS1 be the residual sum of squares with one
exponential term in the model (i.e. with�3 D 0) and
SS2 the residual sum of squares with two exponential
terms. Then

F D SS1 � SS2

2s2 �19�

follows approximately anF-distribution on 2 and
n � 4 degrees of freedom. This is closely analogous
to the correspondingF-distribution result for linear
regression. Tests and confidence regions based on the

residual sum of squares are generally more reliable
than tests or confidence intervals based on standard
errors. If theεi follow a normal distribution then tests
based onF-statistics are equivalent to tests based on
likelihood ratios (see Likelihood ratio tests).

Example 3: PCB in Lake Trout The least squares
estimates and associated standard errors for the model
represented by (16) are given in Table 2. Notice
the large standard errors for the parameters, which
are caused largely by high correlations between the
parameters. The correlations obtained from the off-
diagonal elements of�XTX��1 are in fact 0.997
between O�1 and O�3, �0.998 between O�2 and O�3,
and�0.9998 betweenO�1 and O�2. A 95% confidence
interval for �3 based on its standard error would
suggest that�3 is not significantly different from zero.
However, if �3 is set to zero thenf�x, q� no longer
depends on age, and the sum of squared residuals
increases from 6.33 to 31.12. For these data,s2 D
6.33/25 D 0.253, and theF-test statistic for testing
�3 D 0 is F D �31.12� 6.33�/�2s2� D 48.95, for 2
and 25 degrees of freedom. The null hypothesis of�3
is soundly rejected.

Separable Least Squares

Even in nonlinear regression models, many of the
parameters enter the model linearly. For example,
consider the exponential growth model

f�x, q� D �1 C �2 exp��3x� �20�

For any given value for�3, values for�1 and�2 can
be obtained from linear regression ofY on exp��3x�.
The parameters�1 and�2 are said to be ‘conditionally
linear’ [3]. For any given value of�3 the least squares
estimators of�1 and�2 are available in a closed-form
expression involving�3. In this sense,�3 is the only
nonlinear parameter in the model. Estimation of the
parameters can be greatly simplified if the expression
for the conditionally linear parameters is substituted

Table 2 Least squares estimates and stan-
dard errors for PCB in lake trout data

Parameter Value Standard error

�1 �4.8647 8.4243
�2 4.7016 8.2721
�3 0.1969 0.2739
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into the estimation process. Regression models with
conditionally linear parameters are called ‘separable’
because the linear parameters can be separated out of
the least squares problem in this way.

Any separable model can be written in the form

f�x, �� D X�a�b �21�

wherea is a vector of nonlinear parameters,X is a
matrix of full-column rank depending ona, and b

is a vector of conditionally linear parameters. The
conditional least squares estimator ofb is

b̂�a� D [X�a�TX�a�]�1X�a�TY �22�

The nonlinear parameters can be estimated by
minimizing the reduced sum of squares

[Y � X�a�b̂]T[Y � X�a�b̂] D YTPY �23�

where P D I � X�a�[X�a�TX�a�]�1X�a�T is the
orthogonal projection onto the space orthogonal to the
column space ofX�a�. Several algorithms have been
suggested to minimize the reduced sum of squares [9,
Section 14.7], the simplest of which is probably the
nested Gauss–Newton algorithm [10]:

akC1 D ak C �XTPX��1XTPy �24�

This iteration is equivalent to performing an itera-
tion of the full Gauss–Newton algorithm and then
resetting the conditionally linear parameters to their
conditional least squares values. Separable algorithms
can be modified by using line searches or Leven-
berg–Marquardt damping in the same way as the full
Gauss–Newton algorithm.

Example 4: PCB in Lake Trout Table 3 gives the
results of the nested Gauss–Newton iteration from
the same starting values as previously used for the full
Gauss–Newton algorithm. The nested Gauss–New-
ton algorithm converges far more rapidly. It also

Table 3 Conditionally linear Gauss–Newton
iteration, starting from�3 D 0.5, for PCB in lake
trout data

Iteration �1 �2 �3

1 �1.1948 1.1986 0.5000
2 �6.1993 6.0181 0.1612
3 �4.7777 4.6161 0.1997
4 �4.8740 4.7107 0.1966
5 �4.8657 4.7026 0.1968

converges from a much wider range of starting
values, for example from�3 D 1.

Measures of Nonlinearity

Since most asymptotic inference for nonlinear regres-
sion models is based on analogy with linear models,
and since this inference is only approximate inso-
far as the actual model differs from a linear model,
various measures of nonlinearity have been proposed
as a guide for understanding how good linear approx-
imations are likely to be.

One class of measures focuses on curvature of the
function f and is based on the sizes of the second
derivatives ∂2f/∂�j∂�k . If the second derivatives
are small in absolute value, then the model is
approximately linear. Letu D �u1, . . . , un�T be a
given vector representing a direction of interest and
write

Ajk D
n∑

iD1

ui
∂2f�xi, q̂�

∂�j∂�k
�25�

The matrix A D fAjkg represents the size of the
second derivatives in the directionu. To obtain
curvature measures it is necessary to standardize the
derivatives by dividing by the size of the gradient
matrix. LetX D QR be the QR decomposition of the
gradient matrixX D ∂f�xi, q̂�/∂�j, and write

C D �R�1�TAR�1 �26�

Bates and Watts [2] useC to define relative curvature
measures of nonlinearity. Ifu belongs to the range
space ofX (u D Xb for some b), then C defines
parameter effect curvatures. Bates and Watts [3]
consider an orthonormal basis of vectorsu for
the range space ofX and interpret the resulting
curvatures in geometric terms. IfXTu D 0 then C
defines intrinsic curvatures. It can be shown that
intrinsic curvatures depend only on the shape of
the expectation surfacef�x, q� as q varies and are
invariant under reparameterizations of the nonlinear
model; see [3, Chapter 7] or [9, Chapter 4].

Intrinsic curvature in the direction defined by
the residuals, withui D yi � f�xi, q̂�, is particularly
important. In this case, Bates and Watts [3] call
C the ‘effective residual curvature matrix’. The
eigenvalues of this matrix can be used to obtain
improved confidence regions for the parameters [4].
The largest eigenvalue in absolute size determines the
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limiting rate of convergence of the Gauss–Newton
algorithm [10].

Another method of assessing nonlinearity is to
vary one component ofq and to observe how the
profile sum of squares and conditional estimators
vary. Let q̂�j���j0� be the least squares estimator ofq

subject to the constraint�j D �j0. Bates and Watts [3]
study nonlinearity by observing the rate of change in
q̂�j���j0� and in the sum of squares as�j0 varies.

Robust and Generalized Nonlinear
Regression

This entry has concentrated on least squares
estimation, but it may be of interest to consider
other estimation criteria in order to accommodate
outliers or non-normal responses. Stromberg and
Ruppert [11, 12] have considered high-breakdown
nonlinear regression. Wei [13] gives an extensive
treatment of generalized nonlinear regression models
with exponential family responses. In particular,
Wei [13] extends curvature measures of nonlinearity
to this more general context and uses them for
second-order asymptotics.
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